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Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and
architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution in-
trinsic to DTI weakens its ability to describe intricate tissuemicroanatomy. Consequently, the biological interpre-
tation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We
evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP)
MRI, a powerful analytical framework that efficientlymeasures the probability density function (PDF) of spin dis-
placements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure
(e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP
show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues
with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin
probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity
(NG)measures diffusion heterogeneity by comprehensively quantifying the deviation between the spindisplace-
ment PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame
for reference determined by the orientation of the diffusion tensor and reveal additional information comple-
mentary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical
gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing
crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coeffi-
cients allow separation of different fiber populations in regions of crossing white matter pathways, which in
turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data
sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with
high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10 min. The neu-
roanatomical consistency across healthy subjects and reproducibility in test–retest experiments of MAPMRImi-
crostructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP
MRImetrics could potentially providemore sensitive clinical biomarkerswith increasedpathophysiological spec-
ificity compared to microstructural measures derived using conventional diffusion MRI techniques.
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Introduction

DiffusionMRI is uniquely suited to characterize structural and archi-
tectural features of biological tissue in vivo due to its ability to quantify
molecular displacements of water molecules noninvasively. Over the
past decade, diffusion tensor imaging (DTI) (Basser et al., 1994) has
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become the preferredmethod for analyzing diffusion-weightedMR im-
ages (DWIs) in anisotropic tissues like white matter (WM). The scalar
microstructural maps obtained from DTI, such as the mean diffusivity
(MD) (Basser et al., 1994) and the fractional anisotropy (FA) (Basser
and Pierpaoli, 1996), have become invaluable tools for studying normal
brain (Pierpaoli et al., 1996), brain development and aging, and patho-
logical conditions such as stroke, cancer, brain injury, and neurodegen-
erative diseases (Sundgren et al., 2004). However, the assumption of a
Gaussian spin displacement distribution underlying DTI often renders
the pathophysiological interpretation of changes in these parameters
mean apparent propagator (MAP) MRI to characterize brain tissue
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problematic. There is a growing clinical need for a comprehensive as-
sessment of brain tissue changes using diffusion MRI based on intrinsic
microanatomical parameters that have higher sensitivity and specificity
than DTI-derived parameters.

A general description ofwater diffusion in complex neural structures
is provided by the probability density function (PDF) of spin displace-
ments, also known as the ensemble average propagator or the diffusion
propagator, derived from the analysis ofmultiple DWIs. A reliablemeth-
odology for measuring the spin displacement PDF may better identify
signatures of non-Gaussian, multi-compartmental, restricted, and hin-
dered diffusion in regions of complexWM, and potentially in gray mat-
ter (GM), potentially yielding novel and biologically more specific
markers than FA and MD (Wu and Alexander, 2007; Liu et al., 2010;
Wu and Cheung, 2010). Several techniques have been proposed tomea-
sure the PDF of spin displacements (Liu et al., 2003;Wedeen et al., 2005;
Wu and Alexander, 2007; Assemlal et al., 2009; Descoteaux et al., 2011),
some of which have been applied to in vivo brain imaging. However,
most of these methods require long scan durations to accommodate
the acquisition of numerous DWIs and, compared with DTI, often lack
the necessary robustness and expediency for widespread clinical adop-
tion. A general analysis framework that reliably extracts salient features
of the spin displacement PDF as new microstructural biomarkers could
improve the clinical potential of diffusion MRI.

Mean apparent propagator (MAP) MRI (Özarslan et al., 2013) was
recently proposed as a quantitative physical and mathematical frame-
work to measure the PDF of spin displacements in complex tissue mi-
crostructures. MAP MRI expands the diffusion MR signal analytically
in the local DTI reference frame using a complete set of orthogonal
basis functions closely related to the eigenfunctions of the Fourier trans-
form. Because of the dual nature of these basis functions, both the mea-
sured signal in q-space (Callaghan, 1991) and the propagator in the
reciprocal displacement r-space are represented with the same series
coefficients resulting in increased robustness to noise and immunity
from signal confounds. Moreover, relevant microstructural features
can be reliably quantified with scalar descriptors of the propagator,
e.g., zero-displacement probabilities, non-Gaussianity, and propagator
anisotropy, which can bemeasured along the axes and planes of the an-
atomical reference frame defined by the orientation of the diffusion ten-
sor. Finally, the MAP MRI framework conveniently allows direct
comparisons between and among different propagators, potentially
providing a unique opportunity for use in single subject, longitudinal,
and multi-site-clinical investigations of microanatomical tissue
changes.

In this study, we quantify MAP microstructural parameters in brain
tissues in vivo and evaluate their robustness, consistency, and reproduc-
ibility (test–retest variability) to establish MAPMRI as a clinically feasi-
ble and viable method for investigating brain structural anatomy.

Theory

MAP MRI represents both the measured diffusion MR signal attenu-
ation E(q) in 3D q-space, q = (2π)−1γδG and its Fourier Transform,
mean apparent propagator P(r) = ∫− ∞

∞ E(q)e−iq ⋅ rdq, in the local ana-
tomical frame of reference defined by the diagonalized displacement
covariance matrix (i.e., the diffusion tensor D).

A ¼ 2RTDRtd ¼
u2
x 0 0
0 u2

y 0
0 0 u2

z

0
B@

1
CA ð1Þ

where RT is a proper rotation matrix that diagonalizes the diffusion ten-
sor, and ux, uy, and uz are scaling parameters in the local frame of refer-
ence determined by the diffusion time td and the eigenvalues λk of D:
uk
2 = 2λktd (Özarslan et al., 2013). Using a complete basis set of orthog-

onal Hermite–Gaussian functions separable in three spatial dimensions,
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the diffusion signal attenuation and the corresponding propagator can
be expanded as

E qð Þ ¼ ΦTa ↔
FT

P rð Þ ¼ ψTa ð2Þ

where we are using compact column vector notations: a(A), Φ(A, q),
andψ(A, r) to represent the series coefficientsan1n2n3 and corresponding
3D MAP MRI basis functions ϕn1

ðux; qxÞϕn2 ðuy; qyÞϕn3 ðuz; qzÞ in q-space
and ψn1 ðux; xÞψn2 ðuy; yÞψn3 ðuz; zÞ in displacement r-space respectively,
defined by indices n1, n2, n3 with n1 + n2 + n3 = N representing the
total order in the expansion (truncated at Nmax),

ϕn u; qð Þ ¼ i−nffiffiffiffiffiffiffiffiffiffi
2nn!

p e−
2πquð Þ2

2 Hn 2πquð Þ ↔
FT

ψn x;uð Þ ¼ 1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffiffiffi
2nn!

p
u
e−

x
uð Þ2
2 Hn

x
u

� �
ð3Þ

and Hn(x) is the nth-order Hermite polynomial. The number of coeffi-
cients is (Nmax + 2)(Nmax + 4)(2Nmax + 3)/24 when the diffusion MR
signal and propagator are assumed to be real and symmetric, assump-
tions generally applicable to clinical diffusion MRI experiments.

The analytical series expansions in q-space and r-space have the
same coefficients an1n2n3 , thereby providing robustness to the solution
and a convenient way to enforce physical constraints (e.g., symmetry,
non-negativity, and normalization of the propagator) when fitting the
data (Özarslan et al., 2013). The expansion is dependent on the initial
estimation of A, which is equivalent to estimating the diffusion tensor,
but the infinite series expansion converges to the mean apparent prop-
agator regardless of the choice of A. The first term in the expansion a000
gives the Gaussian component of the propagator, while all higher-order
terms successively approximate its non-Gaussian part using orthogonal
basis functions. Once thematrix A is estimated, the coefficients a are ob-
tained by solving the following quadratic minimization problem:

min
a

1
2
aTQTQaþ yTQa

� �
; Pa ≥ 0 ð4Þ

where y is a column vector containing the diffusion MR signals, S(q),
while the rows of the encoding matrix, Q are the basis functions,ΦT(A, q) evaluated at the corresponding q-values, and the rows of the
constraint matrix P are the basis functions ψT(A, r) evaluated, for exam-
ple, on a uniform 35× 35× 17 Cartesian grid in the positive z half-space
with rmax ¼

ffiffiffi
5

p
maxðux;uy;uzÞ.

The expansion in the MAP MRI functional basis enables the analyti-
cal computation of useful descriptors of the propagator, which have
been compiled in Table 1. For example, one type of zero-displacement
probability (ZDP) called the return-to-origin probability (RTOP) has
been suggested as an indicator for restricted diffusion (Assaf et al.,
2000; Wu and Alexander, 2007; Özarslan et al., 2013) and can be easily
computed from aweighted sumof theMAPMRI series coefficients. Sim-
ilarly, the non-Gaussianity (NG) index measures the deviation from
Gaussian diffusion (i.e., the difference between the propagator P(r)
and its Gaussian approximation PG(r)) as the relative power content
of non-Gaussian terms in the MAP expansion.

Because theMAP basis functions are separable along three spatial di-
mensions, these propagator metrics can be decomposed along the axes
and planes of the local anatomical reference frame A (Özarslan et al.,
2013) using the formulas in Table 1. For example, the return-to-axis
and return-to-plane probabilities (RTAP and RTPP, respectively) reflect
the presence of restrictive barriers in the radial and axial orientation,
while the parallel and perpendicular non-Gaussianity indices (NG⊥

and NG∥, respectively) are indicative of heterogeneous diffusion in the
radial and axial direction. Similar to the radial and axial diffusivities de-
rived from DTI, these scalar parameters encode directional information
well-suited for characterizing complex diffusion in anisotropic tissues
mean apparent propagator (MAP) MRI to characterize brain tissue
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Table 1
MAPMRI parameters can be obtained directly from theMAPMRI series coefficients: RTOP—return-to-origin probability, RTAP—return-to-axis probability, RTPP—return-
to-plane probability, NG—non-Gaussianity, NG⊥—radial non-Gaussianity, NG∥—axial non-Gaussianity, PA—propagator anisotropy, PADTI—anisotropy of the Gaussian
propagator (DTI model), ΔθPO—difference between anisotropy measures of the full and Gaussian propagators.

RTOP Kaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3jAj

p K ¼
(
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PA σ(sinθPA, 0.4)
cos2θPA ¼ hPðrÞPisoðrÞi2
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and could potentially provide discriminatingWMbiomarkers for axonal
loss or demyelination.

With MAP MRI, we can conveniently compare features of the prop-
agators by disregarding their relative orientations (Özarslan et al.,
2013). For two propagators P(r) and Q(r) described by coefficients a
and b, and scaling matrices

A ¼
u2
x 0 0
0 u2

y 0
0 0 u2

z

0
B@

1
CA and B ¼

v2x 0 0
0 v2y 0
0 0 v2z

0
B@

1
CA ð5Þ

respectively, we can define an angular measure of covariance, θPQ by
analogy with the vector dot product

cos2θPQ ¼ P rð ÞQ rð Þh i2
P rð ÞP rð Þh i Q rð ÞQ rð Þh i ¼

bTTζa
� �2
aj j2 bj j2

ffiffiffiffiffiffi
Aj j
Bj j

s
ð6Þ

where thematrix Tζ is given in Appendix A. Using this angular measure
of similarity, we can extract useful microstructural features of the prop-
agators, such as anisotropy. The propagator anisotropy (PA) is defined
using the angular dissimilarity measure sinθPA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos2θPA

p
, where

θPA quantifies the angular difference (Eq. (6)) between the propagator
and its isotropic counterpart represented using a set of isotropic basis
function (Özarslan et al., 2009a) as described in detail in Appendix A.
To allow comparison with DTI results, a similar angular measure θDTI
(Özarslan et al., 2013) is defined for the Gaussian propagator (see
Appendix A). Finally, the angular anisotropy metrics θPA and θDTI can
be scaled to the dynamic range of the FA with a nonlinear function
that emphasizes intensity variations in the desired range to obtain the
propagator anisotropy measures PA and PADTI (Table 1).

To measure the orientational characteristics of the diffusion propa-
gator, we compute its radial moments analytically from the MAP MRI
coefficients and visualize the resulting orientation distribution func-
tions (ODF) using 3D glyphs (see Appendix B).

Methods

Four healthy volunteers were scanned on a conventional 3 T scanner
with a 32-channel radio frequency (RF) coil and a single-shot spin echo
diffusion-weighted EPI pulse sequence. All subjects participating in this
study provided informed written consent in accordance with a clinical
Please cite this article as: Avram, A.V., et al., Clinical feasibility of using
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protocol approved by the Institutional Review Boardwithin the Nation-
al Institutes of Neurological Disorders and Stroke (NINDS). The volun-
teers were instructed to minimize head motion during the entire
duration of the MRI exams. The imaging parameters were optimized
to obtain, in a single average, in vivo DWIs with minimal image distor-
tions and sufficient signal-to-noise ratio (SNR) at large diffusion
weighting for accurate registration and post-processing. To this end,
we acquired DWIs with 3 mm isotropic resolution, field-of-view
(FOV) 21 × 21 cm2, a 70 × 70 imaging matrix size, 42 slices for full-
brain coverage, and parallel imaging acquisition (SENSE) with an accel-
eration factor of 2. The short echo spacing of 528 μs resulted in reduced
image distortions due tomagnetic field inhomogeneities, including gra-
dient eddy currents, while the relatively low spatial resolution provided
sufficient sensitivity for reliable distortion and motion correction with
adequate tissue support even in DWIs with large diffusion weightings.
Diffusion gradients with a maximum amplitude of 5 G/cm, a pulse
width of δ = 34.5 ms, and a separation of Δ = 40.5 ms were applied
to acquire a large diffusion data set of 698 DWIs (including 14 non-dif-
fusion-weighted b = 0 s/mm2 baseline images) with maximum diffu-
sion weighting bmax = 6,000 s/mm2 (qmax = 80 mm-1). The DWIs
were sampled in 6 shells with b = 1000, 2000, 3000, 4000, 5000, and
6000 s/mm2, along 23, 43, 83, 131, 148, and 256 directions, respectively.
In each shell, the diffusion encoding directions were uniformly distrib-
uted on the unit sphere (Jones et al., 1999). Across shells, the directions
were not collinear and were not optimized to be uniformly interleaved
on the unit sphere. Images were obtained with full k-space coverage to
prevent signal loss from subject motion and cardiac pulsation resulting
in a minimum TE/TR = 94/5,800 ms. The non-diffusion-weighted im-
ages were acquired throughout the scan to perform SNR computations
and verify subject motion and measurement stability. The total scan
time was 72 min. In addition, for each subject, we also acquired high-
resolution 1 mm3 T2-weighted fast spin echo and T1-weighted MP-
RAGE scans to serve as anatomical templates for motion and distortion
correction and tissue segmentation, respectively.

All DWIs (and the corresponding gradient orientations) were proc-
essed to correct for subject motion and EPI distortions due to magnetic
field inhomogeneities (including gradient eddy currents) and registered
to the high-resolution T2W anatomical scan using the Tortoise software
package (Pierpaoli et al., 2010). After correction, theWMSNRwas com-
puted as the voxel-wise mean divided by the standard deviation of the
signal in multiple non-diffusion-weighted (baseline) images acquired
during the experiments. This method was preferred over the standard
mean apparent propagator (MAP) MRI to characterize brain tissue
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region-of-interest (ROI)-based SNR calculation because it quantifies
contributions frommultiple sources of error and artifacts that can accu-
mulate during long in vivo experiments such as subjectmotion, changes
in tissue partial volume, physiological pulsations, hardware instabilities,
etc. A diffusion tensor model was fit to the subset of 66 DWIs with b-
values of up to 2,000 s/mm2, and maps of FA and MD were computed
from the tensor components.

This initial DTIfit also represented thefirst step in theMAPMRI anal-
ysis determining, for each voxel, the scaling matrix A and the transfor-
mation (rotation R) from the laboratory to the anatomical reference
frame (Eq. (1)). On a voxel-by-voxel basis, the scaling parameters (ma-
trix A in Eq. (1)) were then used to determine theMAPMRI coefficients
in the anatomical DTI reference frame from the full DWI data set by
solving the quadratic minimization problem in Eq. (4) with symmetry,
normalization, and non-negativity constraints (enforced numerically
using a grid 35 × 35 × 17 Cartesian grid in the positive z half-space
with rmax ¼

ffiffiffi
5

p
maxðux;uy;uzÞ) to ensure a physically plausible analyt-

ical solution of the propagator. To observe the convergenceproperties of
the MAP series approximation and test its ability to resolve fine micro-
structural details, the calculation was repeated using different trunca-
tions for the MAP MRI series expansions Nmax = 4, 6, 8, and 10,
yielding 22, 50, 95, and 161 unknown coefficients, respectively. Data
were processed on the BIOWULF/HELIX computer cluster at the Nation-
al Institutes of Health using in-house MATLAB (Mathworks Inc., Natick,
MA, USA) and IDL (Exelis, Boulder, CO, USA) routines. Orientational pro-
files of the propagators were visualized with orientation distribution
functions (ODF) computed analytically from MAP MRI series coeffi-
cients as the 2nd radial moment of the propagator. To illustrate the
basic ability of using the MAP-derived ODFs to resolve crossing white
matter fiber pathways, we performed whole-brain fiber tractography
with DSI Studio and TrackVis (Wang et al., 2007).

From the MAP MRI series coefficients, we computed scalar descrip-
tors of the propagators (RTOP, NG, and PA) and quantified them in ana-
tomically defined regions of interest (ROIs). Zero-displacement
probability and non-Gaussianity metrics were computed along and
across the axes of the local reference frame determined by the diffusion
tensor: RTAP, RTPP, axial (NG⊥), andplanar (NG∥) non-Gaussianities, re-
spectively. The high-resolution T1W MP-RAGE data were processed
with FreeSurfer's automatic segmentation tool and used as a template
to define anatomical ROIs in the cerebral GM, cerebral WM, corpus
callosum (CC), basal ganglia (BG), and thalamus (TH). Tominimize par-
tial volume contamination inWMstructures, theWMand CC ROIs were
masked with an FA threshold of 0.3 and 0.7, respectively, for each sub-
ject. ROI-averaged values of MAP MRI parameters were compared
with corresponding values obtained from DTI-derived metrics such as
FA andMD.All DTI andMAPMRImicrostructural parameterswere com-
puted in the native subject coordinates and subsequently transformed
to FreeSurfer coordinates for ROI analysis.

We evaluated the robustness of estimating MAP MRI parameters in
the presence of different SNR using numerical Monte Carlo experi-
ments. MR diffusion-weighted signals were generated for propagators
defined by MAP MRI series expansions truncated at order Nmax = 10
(corresponding to 161 series coefficients) obtained from representative
WM regions with diverse microstructure. These MAP MRI series coeffi-
cients describing a physical diffusion MAP function were used to nu-
merically generate noiseless signals corresponding to the diffusion
encoding scheme (i.e., diffusion gradient table) applied in this study.
Rician noise of different amplitudes was added to the diffusion signals
to simulate realistic experiments with different SNR levels. For each
SNR level, we generated 400 experimental instances, computed the
MAPMRI series coefficients andmicrostructural parameters, and quan-
tified the robustness of themeasurementwith relevant statistics (mean,
standard deviation).

To investigate the clinical feasibility of the technique, we subsam-
pled the original diffusion MRI data set maintaining only 98 DWIs
(including 3 baseline images) corresponding to clinical scan duration
Please cite this article as: Avram, A.V., et al., Clinical feasibility of using
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of less than 10min. Specifically, the subsampled data sets contained dif-
fusion measurements along 4, 7, 11, 17, 23, and 31 orientations in each
shell with b= 1000, 2000, 3000, 4000, 5000, and 6000 s/mm2, respec-
tively.Within each shell, the subsampled set of diffusionmeasurements
was selected so as to maximize the minimum angular difference be-
tween any two diffusion orientations, thereby maintaining a relatively
uniform distribution on the unit sphere (Cheng et al., 2014). For each
subject, the MAP MRI parameters and ODFs computed from the sub-
sampled data sets using the sameNmax=6were compared to those ob-
tained from the complete DWI data sets. Differences betweenMAPMRI
scalar parameters were quantified using absolute error, while differ-
ences between the propagators were quantified more generally using
the angular dissimilarity measure (Eq. (6)). The consistency of MAP
MRI metrics was determined by comparing ROI-averaged MAPMRI pa-
rameter values across the four healthy volunteers, while reproducibility
was evaluatedwith test–retest experiments in three healthy volunteers,
each scanned in two separate exam sessions at least one week apart.

Results

No significant large subject motion was observed in any of the data
sets over the course of the experiments. We carefully analyzed the
image distortion due to gradient eddy currents in DWIs acquired with
bmax = 6,000 s/mm2, and found no significant differences between
DWIs acquired with the commonly used twice refocused spin echo
(TRSE) and the conventional Stejskal–Tanner spin echo diffusion prep-
aration employed in this study after motion and distortion correction
were performed using Tortoise (Pierpaoli et al., 2010). The low spatial
resolution allowed for the use of short echo spacing in the EPI readout,
which along with parallel imaging, minimized distortions caused by
magnetic field inhomogeneities, including gradient eddy currents. The
conventional spin echo was also preferred over the TRSE sequence
because of the shorter minimum echo time (TE) at large b-values
TE = 94 ms, compared with TE = 111 ms for TRSE, resulting in
improved tissue sensitivity.

The WM SNR was quantified as the mean over the standard devia-
tion computed from several baseline images acquired throughout the
experiment after post-processing and therefore included contributions
from subject motion, physiological pulsations, image registration/post-
processing, and scanner hardware instabilities. DWIs acquired at
3 mm isotropic resolution had excellent baseline SNR even in white
matter (above 80) and sufficient brain tissue signal in images with
bmax = 6,000 s/mm2 to support reliable distortion correction and
image registration. The corrected DWIs consistently showed good SNR
and spatial accuracy when compared to the anatomical T2W images,
suggesting that DWIs with sufficiently large diffusion weighting can
be acquired for clinical MAP MRI. Regions of low SNR, such as the ven-
tricles and tissue boundaries with significant partial volume contribu-
tions from cerebrospinal fluid (CSF) were excluded from the ROI
analysis.

The in vivo DWIs were analyzed using different truncation orders
(Nmax) of the MAP MRI series expansions. Regardless of Nmax, the first
coefficient that represents the lowest-order (Gaussian) term explains
a large portion of themeasuredDWI signal even inWMregions contain-
ing crossing fibers. Fig. 1 shows the calculatedMAPMRI coefficients and
corresponding ODFs for Nmax = 4, 6, 8, and 10 in a representative voxel
from a region with complex neuronal microstructure. These results
highlight the stability of the larger, lower-order coefficients expected
from the orthogonality of the MAP MRI basis functions (Özarslan et al.,
2008, 2009a). As the number of estimated coefficients increases, the
problem becomes more ill-posed, resulting in a larger condition num-
ber, κ (Fig. 1). While more coefficients provide a finer characterization
of the propagator, the amount of additional detail in the reconstruction
of the propagator does not increase significantly beyond a certain point.
The trade-off between the level of detail in the propagator estimation
and the amount of data acquired (and scan duration) is critical for
mean apparent propagator (MAP) MRI to characterize brain tissue
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Fig. 1.MAP MRI reconstructions using different series truncation orders Nmax for a representative voxel containing complex WMmicrostructure. Left panel: magnitude of MAP MRI co-
efficients computed with Nmax = 4, 6, 8, and 10 (corresponding to 22, 50, 95, and 161 coefficients, respectively). Right panel: corresponding diffusion orientation distribution functions
(ODF).Due to the orthogonality of theMAPMRI basis functions, low-order coefficients donot change as the truncation order is successively increased, despite increasing condition numberκ at larger.
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clinical applications. Including terms up to order 6 was found to yield a
sufficient level of detail in propagators from diverse brain regions, while
allowing robust estimation of the MAP MRI coefficients even from
subsampled data sets that simulate clinically feasible experiments. All
further analysis of MAP MRI microstructural parameters described in
this study uses Nmax = 6.

The computation time for the reconstruction of MAP MRI parame-
ters from whole-brain diffusion data sets with 3 mm spatial resolution
using Nmax = 6 was less than 3 h on a single workstation with 32GB
RAM and 8 cores x Intel i7-4770 K at 3.5G Hz. An acceleration of the
MAPMRI analysis by a factor equal to the number of slices was achieved
using the NIH BIOWULF computational cluster by simultaneously
reconstructing all slices on multiple parallel nodes.

Across all healthy volunteers, the values of MAP-derived parameters
were consistent in corresponding neuroanatomical regions with differ-
ing tissue features (Fig. 2). In vivo RTOP images revealed larger values in
WM (especially in the CC) than in GM, and very low values in regions
with high partial volume of CSF. The RTOP tissue contrast may reflect
overall restrictions and cellularity better than does the MD. RTAP was
similar to RTOP inGM, but noticeably larger in regions of coherent tight-
ly packedWM fibers such as the CC, where it is more sensitive to cylin-
drical restrictions potentially due tomyelin. The RTPPwas similar in GM
andWMwith slightly higher values in deep brain structures such as the
thalamus. Overall deviations fromGaussianity (NG)were largest inWM
fibers, potentially reflecting restriction perpendicular to the fiber orien-
tation as indicated by largeNG⊥, whereas diffusion along the axial direc-
tion was relatively Gaussian (low NG∥). PA and PADTI measure diffusion
anisotropy based on the angular dissimilarity (θPA and θDTI) of the prop-
agator relative to its isotropic counterpart for the general MAP MRI and
Gaussian (DTI) approximations, respectively. The angular difference
ΔθPO = θPA − θDTI directly quantifies the component of diffusion
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anisotropy that cannot be explained with the Gaussian model. As ex-
pected, the PADTI and FA correlated strongly, showing significantly
lower values in WM regions of fiber crossings and in GM, where the
Gaussian approximation determining thesemetrics cannot comprehen-
sively quantify the complex orientational heterogeneity of the local mi-
croanatomy. The PA values on the other hand were uniformly high
throughoutWM, even in regionswith largefiber orientation dispersions
(i.e., crossing fibers) where the FA and PADTI dropped. Moreover, the PA
aswell as the angular differencemeasure ΔθPO revealed significant con-
trast in GM, suggesting that these metrics could potentially quantify
morphological differences between distinct cortical regions. The quanti-
tation ofMAPMRImicrostructural parameter in theWMandCCwasnot
significantly affected by the choice of the FA threshold used to define
these ROIs. Measured values for all microstructural parameters were
in the expected ranges, in good agreement with previous studies with
fixed brain specimen (Özarslan et al., 2013), supporting the clinical
translatability of this technique (Fig. 2). In regions containing high par-
tial volumewith CSF, such as the ventricles, the MAPMRI structural pa-
rameters are likely biased due to low signal intensity in DWIs evenwith
low or moderate b-values. Accordingly, these regions were excluded
from the subsequent ROI analysis.

ROI-averaged values of MAP MRI metrics (Fig. 3) were remarkably
consistent across subjects and revealed significant contrast between ce-
rebral GM andWM, coherentWM (CC), and deep brain graymatter nu-
clei such as the basal ganglia (BG) and the thalamus (TH). The relatively
small standard deviations of these parameters across the group of all
subjects in our preliminary results suggests little individual variability
and good consistency of MAP MRI microstructural parameters in
healthy individuals, supporting the possibility of clinical assessments.
The RTOP was higher in WM than in GM and was mainly influenced
by RTAP. The NG⊥was high and uniform throughout theWM(including
mean apparent propagator (MAP) MRI to characterize brain tissue
ge.2015.11.027

http://dx.doi.org/10.1016/j.neuroimage.2015.11.027


Fig. 2.Neuroanatomical variation ofMAPMRI andDTImicrostructural parameters in a representative subject. DTI-derived parameters:MD, FA, anddirectionally encoded color (DEC)map
(left). MAP MRI-derived zero-displacement probabilities, propagator anisotropy and non-Gaussianity indices (right).
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the CC) and showed intermediate values in subcortical regions. In the
CC, themeanPAwas only slightly larger than in subcorticalWM,where-
as the mean FA and PADTI were significantly different between these
two ROIs (Fig. 3), suggesting that the PA could be less sensitive to archi-
tectural features ofWM (local orientational arrangement of fibers) than
DTI-derived anisotropymeasures and overall amore specific and robust
measure for structural integrity. In the GM, BG, and TH, the PA was
larger than the PADTI and showed larger dynamic range, potentially
reflecting distinctions between cortical and/or subcortical regions
(GM, BG, and TH). Compared with DTI-derived metrics such as FA and
MD,MAPMRI parameters encode complementary informationwith dif-
ferent tissue contrast; the NG for instance directly quantifies the differ-
ence between the MAP and DTI model approximations. While current
results are consistent and reproducible, a separate study using a larger
population must be conducted to establish normative values and con-
struct anatomical atlases of MAP parameters in the brain tissue of
healthy volunteers and patients.

Fig. 4 illustrates a unique feature of MAP MRI—the computation of
ZDP and non-Gaussianity indices from 2D and 1D projections of the
propagator onto the planes and along the axes of the anatomical refer-
ence frame. These maps are analogous to the axial (parallel) and radial
(perpendicular) diffusivities (eigenvalues) derived from DTI but reflect
complex non-Gaussian diffusion processes and could provide integral
clues for elucidating structural and architectural features in anisotropic
tissues (restrictions, fiber dispersion, multiple compartments, etc.). For
instance, in regions of fiber crossings, the RTPP measured along the ori-
entation ê3 corresponding to the smallest DTI eigenvaluemight bemore
indicative of radial restrictions (potentially due to myelin) compared
with either RTAP or RTOP. In regions of coherent WM, fibers RTPP or
Please cite this article as: Avram, A.V., et al., Clinical feasibility of using
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NG|| measured along the orientation ê1 of the largest DTI eigenvalue
are likely modulated by the orientational dispersion of fibers. Future
studies with higher spatial resolution will be able to investigate themi-
croanatomical organization of different cortical regions and layers by
quantifying the tangential and perpendicular components of propagator
descriptors at the WM–GM interface (McNab et al., 2013).

TheODFs revealed the characteristics of the local arrangement ofmi-
croanatomical structures (Fig. 5A). Orientational profiles reflecting the
complexity of arrangements of WM fibers were observed in regions
with low FA along the superior fronto-occipital fasciculus, or in deep
brain GM nuclei such as the putamen. Whole-brain fiber tractography
yielded satisfactory results butwould benefit from improved spatial res-
olution. In general, increased spatial resolution and/or a large number of
DWIs and MAP coefficients (Nmax) should be used for applications
requiring high angular resolution of the ODFs, such as studies of
whole-brain structural connectivity. While Fig. 5B demonstrates the
basic ability of MAP MRI to resolve crossing fibers (Fig. 5B, arrows), a
rigorous evaluation of its potential for whole-brain fiber tractography
is beyond the scope of this manuscript and will be addressed in future
studies. Although a truncation of order 6 provided sufficient detail in
the ODFs for characterizing complex WM, regions of GM might benefit
from reconstructions using more terms (larger Nmax). Due to likely par-
tial volume contributions resulting from the relatively large voxel size,
the orientational characteristics of the propagator in GM were not ex-
plored further in this study.

Numerical Monte Carlo simulation experiments suggest that for
small SNR values the MAP MRI parameters can be biased; generally,
the ZDP and non-Gaussianity parameters are overestimated, whereas
the anisotropy parameters are underestimated (Fig. 6). At higher SNR
mean apparent propagator (MAP) MRI to characterize brain tissue
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Fig. 3. ROI analysis reveals the consistency of MAP MRI parameters across healthy volun-
teers (error bars indicate standard deviation across subjects) and good sensitivity to tis-
sues with different structural and architectural features.
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values, these biases disappear and the variance of the estimated param-
eters is greatly reduced. These results confirm that metrics computed
from projections of propagator on the axes (RTAP, axial NG) and planes
(RTPP, planar NG) of the anatomical coordinate system are more sus-
ceptible to noise compared with the overall propagator measures
(RTOP and NG), but also result in negligible biases at SNR levels above
75. Overall, the SNR dependence of MAP MRI metrics is comparable to
that of DTI-derived parameters. Although Fig. 6 illustrates the simula-
tion results for a representative propagator obtained in a region of com-
plex WM, similar results were obtained for propagators in different
brain tissues such as coherent WM, cortical GM, or deep brain nuclei.
In voxels with significant CSF partial volume the signal noise floor is
reach even for very low b-values significantly biasing the estimation of
both DTI and MAP MRI parameters.

Drastically reducing the number of DWIs does not significantly affect
the computation of MAP MRI microstructural parameters when images
with bmax = 6,000 s/mm2 are included. The computations of integral
and “integral-like” measures of the propagator such as the RTOP, NG,
and PA are remarkably stable and robust and can be obtained from as
few as 98 DWIs (Fig. 7), suggesting that MAP MRI can be accelerated
sufficiently for routine clinical applications and that relatively large
b-values are beneficial. The largest discrepancies were found in regions
close to the ventricles and at the cortical surface, where quantitation er-
rors caused by motion/pulsation, gradient sampling scheme, and CSF
partial volume contamination might lead to fitting errors. As expected,
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the orientational profiles of the propagator showed larger sensitivity
to the number of DWIs and the gradient sampling schemes. Neverthe-
less, the small angular dissimilarity values measured between the
propagators derived from the full and subsampled data sets underscore
the robustness of the analytical MAP MRI framework and further
corroborate its clinical feasibility (Fig. 7). The accuracy in measuring
MAP MRI parameters from clinical data sets is expected to improve for
future MAP MRI studies in which the diffusion sampling scheme
(e.g., 95 direction protocol) is optimized from scratch by selecting diffu-
sion encoding directions with uniform coverage both within and across
shells with different b-values (Koay et al., 2012; Cheng et al., 2014), and
confounds due to subjectmotion are greatly reduced due to shorter scan
duration.

The test–retest experiments confirmed the reproducibility of MAP
MRI experiments (Fig. 8). MAPMRI reconstructions of subsampled clin-
ical (and full) data sets obtained in different scans yielded similar values
for the propagatormicrostructural parameters and comparable orienta-
tion profiles. Fig. 8 summarizes the ROI-averaged DTI and clinical MAP
MRI parameters inWM and GMobtained from the subsampled test–re-
test scans in each subject. Our results indicate that there is only a small
variation of the measured MAP parameters in the same healthy volun-
teers across sessions (similar to that observed in DTI) that could be at-
tributed to differences in subject head position and errors due to post-
processing (e.g., image registration). The RTOP was themost robust pa-
rameter, while the NG and PA may be more sensitive to the estimation
of the local reference frame (rotation matrix R), which can be affected
by differences in subject head orientation and movement during the
two sessions.

Discussion

This study accomplishes a critical step in the clinical translation of
MAP MRI by demonstrating that it is possible to acquire MAP MRI
data of sufficient quality to make a radiological assessment possible in
a clinically feasible scanning period. To qualify the clinical potential of
the microstructural parameters derived with MAP MRI, several techni-
cal challenges and limitations deserve further consideration.

When clinical DWIs are acquired with large b-values, the range of
in vivo water mobilities and tissue anisotropies can generate diffusion
MR signals with a large dynamic range, potentially dropping below
the noise floor in regions with significant CSF partial volume contribu-
tions. Evidently, such noisy signals bias the propagator estimation and
should therefore be excluded from the MAP MRI analysis. Even in re-
gions of highly coherentWM (e.g., CC), diffusion along the fiber orienta-
tion can sometimes lead to bias due to measurement noise. Therefore,
increasing the spatial resolution to that of a typical clinical DTI scan
(e.g., 2 mm or 2.5mm isotropic) at the cost of lower SNR should be con-
sidered carefully (Fig. 6) and potentially used in conjunction with de-
noising strategies (Koay et al., 2009) or regularizationmethods. Our cur-
rent study aimed to provide an unbiased assessment of microstructural
MAP MRI parameters in vivo. For that purpose, it was necessary to ac-
quire large diffusionMRI data sets with a spatial resolution of 3mm iso-
tropic that ensures sufficient sensitivity in brain tissues (Fig. 6). The
commercialization of advanced gradient systems capable of achieving
larger amplitudes and faster slew rates will provide high SNR DWIs ac-
quired with shorter TEs, likely enabling higher spatial resolutions
(Setsompop et al., 2013) in clinical MAP MRI scans.

MAP MRI parameters provide a more comprehensive tissue
characterization than DTI parameters reflecting physically meaningful
microstructural features with greater neuroanatomical specificity.
The family of zero-displacement probability measures (e.g., RTOP,
RTAP, RTPP) could become more specific biomarkers for cellularity,
size of cell bodies and processes, or presence of restricting barriers
(e.g., myelin) than the MD or the tensor eigenvalues derived with DTI
(Gupta et al., 1999), while NGmeasures couldmore sensitively indicate
additional sources of diffusional heterogeneity such as exchange, or
mean apparent propagator (MAP) MRI to characterize brain tissue
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Fig. 4. Decomposition of RTOP and NGmeasures along the axes of the local tissue frame of reference. In anisotropic tissues, these parameters reveal directional information that comple-
ments the axial and radial diffusivities measured with DTI.
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multiple diffusing compartments. Metrics of ZDP and non-Gaussinaity
computed from projections of the propagator in the anatomical
reference frame could complement DTImeasures of radial and axial dif-
fusivities, which have been differentially associated with demyelination
and axonal loss, respectively (Song et al., 2005). For instance, in brain re-
gions with coherent WM such as the CC, most of the non-Gaussian dif-
fusion behavior could be attributed to restriction orthogonal to the
axons' orientation as reflected by large values of NG⊥, a parameter
that could prove to be a more powerful marker for demyelination
than radial diffusivity. Compared to the FA, the PA provides a more
proper assessment of anisotropy in regions with crossing WM fibers
and has a larger dynamic range across different tissue types (including
GM structures) possibly reflecting interesting cytoarchitectural and
morphological features of potential clinical significance. The angular
measure (Eq. (6)) for quantifying differences between propagators in
their individual reference frames could provide a unique clinical oppor-
tunity for longitudinally monitoring tissue microanatomical changes
within individual subjects. Our preliminary results support the clinical
potential of assessing brain microstructure using MAP MRI parameters
and call for further studies on patient populations.

The decomposition of both RTOP and NG was performed in the
frame of reference determined by the diffusion tensor (Eq. (1)). RTAP,
RTPP, NG∥, and NG⊥ were computed with respect to the direction with
the largest diffusivity (i.e., the largest root-mean-squared spin displace-
ment). In areas with multiple fiber orientations, this direction is ill-
defined, and just like the DTI-derived axial and radial diffusivities,
RTAP, RTPP, NG∥, and NG⊥ must be interpreted with caution (Avram
et al., 2014). In those regions, it is informative to also take into
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consideration the projections of RTOP and NG along and across the
other eigenvectors of the diffusion tensor as shown in Fig. 4.

Viewing MAP MRI as a generalization of DTI allows one to directly
appreciate the additional information it provides, as well as its limita-
tions. For example, DTI-equivalent zero-displacement probabilities can
be computed by truncating the series at Nmax = 0. The Gaussian RTOP
is a function of the diffusion time and the geometric mean of the DTI ei-
genvalues and therefore correlates inversely with the MD. When the
MAP RTOP is computed using a larger Nmax, a multiplicative “correction
factor,” in the form of a weighted summation of the MAP coefficients, is
added, sensitizing the measurement to complex diffusion processes
(e.g., effects of restricting barriers). Compared with anisotropy mea-
sures derived from the DTI model such as the FA or the PADTI, the PA
is generally sensitive to differences in orientational diffusion heteroge-
neity including angular variations in non-Gaussian diffusion. The addi-
tional anisotropy information added by MAP MRI compared to DTI
is quantified directly by the angular difference measure ΔθPO = θPA −
θDTI. The NG indices computed using Eq. (6) quantify “angular” devia-
tions from the Gaussian propagators in a more general sense as com-
pared with other similar techniques, such as the diffusion kurtosis
(Jensen et al., 2005). Nevertheless, in MAP MRI too, the NG estimate
can be influenced by the initial Gaussian approximation (i.e., scaling
matrix A). While theoretically one could expand the propagator in an
infinite MAP series using an arbitrary scaling matrix, the NG is only
physically significant if the scaling parameters reflect the mean-
squared displacements of tissuewater spins undergoing Gaussian diffu-
sion. For this reason, in our study, the scaling matrix was estimated by
fitting a DTI model to a subset of the data comprising DWIs acquired
mean apparent propagator (MAP) MRI to characterize brain tissue
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Fig. 5. Glyph representation of propagator ODFs reconstructed using MAP MRI in two regions of complex tissue microstructure (A). Whole-brain tractography using ODFs derived from
MAP MRI can be used to resolve crossing WM fiber pathways (B).

Fig. 6.Monte Carlo simulation experiments reveal how at very low SNR the microstructural parameters measured with DTI (A) and MAPMRI (B) can be biased in a white matter region
with complex microstructure (C). At higher SNR levels, these parameters converge to unbiased values and exhibit reduced variances.

9A.V. Avram et al. / NeuroImage xxx (2015) xxx–xxx

Please cite this article as: Avram, A.V., et al., Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue
microstructure, NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.11.027

http://dx.doi.org/10.1016/j.neuroimage.2015.11.027


Fig. 7. Clinical feasibility of MAPMRI in a representative healthy volunteer. The MAPMRI metrics obtained from a highly subsampled data sets show very similar values to those obtained
with the full data set. The largest differences occur in regions close to the ventricles and along sulci, where CSF partial volume contributions aremore pronounced. PA and NG values in the
ventricles were masked as these measurements are likely biased due to low SNR.
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with low b-values (Gaussian regime). If the scaling matrix is measured
from large b-value DWIs, the diffusivities no longer accurately quantify
Gaussian diffusion and themeasuredNGdoes not represent a physically
meaningful quantity. In this case, one should transform the MAP coeffi-
cients to a different functional basis determined by appropriate scaling
parameters that reflect Gaussian diffusion before computing the NG.
In general, a MAP defined by scaling matrix A and coefficients a, can
be represented in a new functional basis determined by scaling matrix
B and coefficients b= Tζa, where thematrix Tζ is defined in Appendix A.

One exciting promise ofMAPMRI is its ability to directly relate prop-
agator descriptors such as the RTAP to physical features of the tissuemi-
crostructure if the geometry of the underlyingmicroscopic restriction is
well characterized. For example, if we viewmyelinated axons in coher-
ent WM as a collection of parallel impermeable cylinders and neglect
extra-axonal signal contributions, we can infer the average axonal
cross-sectional area, and implicitly the average axon diameter, directly
from the RTAP (Özarslan et al., 2013). This physical interpretation
of RTAP is predicated on two additional assumptions: (1) a diffusion
time that is sufficiently long to allow water molecules to completely
sample microscopic compartments and (2) a diffusion gradient pulse
duration δ that is sufficiently short to ensure the mean apparent propa-
gator solution is a good approximation to the truemean propagator. The
first condition is met formost in vivo experiments with human subjects,
for which the inner diameters of myelinated axons are generally b5 μm,
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the tissue water diffusivity is on the order of 1.5 μm2/ms, and the dura-
tion of the diffusion preparation is generally longer than 50 ms. Due to
gradient hardware limitations on whole-body MRI scanners, the pulse
width δ is relatively long (e.g., 32 ms in our study) potentially leading
to deviations from the short gradient pulse approximation underlying
q-space analysis. This violation of the short pulse approximation repre-
sents a challenge that is inherent to the clinical translation of all diffu-
sion MRI methods that acquire and analyze data in q-space (Liu et al.,
2003; Wedeen et al., 2005; Wu and Alexander, 2007; Assemlal et al.,
2009; Descoteaux et al., 2011) and results in measuring an approxima-
tion of the truemean propagator of the voxel microstructure. Neverthe-
less, for a well-characterized microstructure (e.g., parallel cylinders),
the effect of finite δ can be overcome using numerical methods
(Özarslan et al., 2009b; Avram et al., 2013). In WM tissue with more
complex microstructure, the relation between RTAP and the average
axon diameter can be affected by additional factors such as signal con-
tributions from extra-axonal water, fiber orientation dispersion, mem-
brane permeability, exchange between multiple compartments, and
active cellular transport. Interestingly, these factors are expected to de-
crease the overall probability of spins to return to the axis parallel to the
axon orientation (Pierpaoli and Basser, 1996), resulting in lower mea-
surements of RTAP and implicitly an overestimation of the true average
axon diameter. Consequently, in biological tissue, RTAP could provide
an upper limit for the average axon diameter in the voxel (Avram and
mean apparent propagator (MAP) MRI to characterize brain tissue
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Fig. 8. Test–retest results for ROI-averaged clinicalMAPMRI and DTI microstructural parameters inWMand GMderived from clinical data sets in three healthy volunteers. The test–retest
reproducibility and consistency across subjects ofMAPMRImetrics are similar to those of DTI-derived parameters. The values compare verywellwith those obtained from theROI analysis
of the full data sets (Fig. 3).
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Basser, 2014). Reliable assessments of axon diameters at the whole-
brain level using the RTAP measured with MAP MRI (Avram and
Basser, 2014) might necessitate improved tissue specificity (Pasternak
et al., 2009; Avram et al., 2010) and additional signal modeling (Jian
et al., 2007; Zhang et al., 2012).

Parametric diffusion models such as NODDI (Zhang et al., 2012) or
AxCaliber (Assaf et al., 2008) rely on a priori assumptions about the
tissue microstructure and can therefore be very powerful tools for
characterizing tissue regions where the microstructure is known and
the parametric model is rich enough to embody it. In contrast, the
non-parametric framework of MAP MRI aims to quantify diffusion in
arbitrary tissue environments and therefore may be more amenable to
detecting and studying pathology or brain tissue changes during devel-
opment or aging at the whole-brain level.

The analytical formulation ofMAPMRI allows the reliable estimation
of propagator metrics from diffusion MRI data sets that can be acquired
within clinically achievable scan durations. The Hermite–Gaussian basis
functions used in MAP MRI have desirable asymptotic behavior consis-
tent with the physical requirements for the signal attenuation at small
and large q-values and are eigenfunctions of the Fourier Transform,
thereby inherently describing the signal in both q-space and reciprocal
(displacement) r-space (Özarslan et al., 2008). These properties make
the complete set of orthogonal MAP MRI basis functions well-suited
for characterizing complex (non-Gaussian) diffusion signals that occur
in many in vivo situations. Propagator metrics obtained from drastically
reduced data sets of DWIs show similar values as the corresponding
metrics obtained from the complete data set, suggesting that MAP
MRI can be sufficiently accelerated for clinical applications. Moreover,
the MAP MRI parameters obtained from the subsampled data sets
show a consistent neuroanatomical contrast in healthy volunteers and
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can be reliably replicated in test–retest experiments.While these results
suggest that the analytical MAP MRI framework is sufficiently powerful
to measure propagator metrics from clinical data sets that can be ac-
quired within 10 min, we expect that these parameters can be reliably
estimated from even fewer DWIs by incorporating additional regulari-
zation constraints in the MAP reconstruction (L2 norm, singular-value
decomposition, compressed sensing reconstruction). Compared with
other advanced diffusionMR techniques,MAPMRI framework also pro-
vides analytical metrics of various propagator features in the local refer-
ence frame of the tissue. Scalar propagator metrics of ZDP, non-
Gaussianity, and anisotropy could potentially provide new insights
into the microstructural organization of brain tissues during normal
and abnormal development, aging, and disease.
Conclusions

Taken together, our results affirm in vivo MAP MRI as a feasible and
viable technique for clinical applications and encourage future studies
focusing on quantitative assessment, biophysical validation, and clinical
performance. MAPMRI subsumes DTI and provides amore comprehen-
sive microstructural tissue characterization with complementary scalar
indices that potentially could be more specifically related to features of
tissue morphology (e.g., compartment size, cellularity, restriction).
These novel MAP MRI parameters show consistent neuroanatomical
contrast and are very reproducible in healthy volunteers, supporting
the possibility of radiological assessments. Ultimately, theymay provide
biologically specific tissue markers in the early detection of demyelin-
ation pathologies (e.g., multiple sclerosis) ormild traumatic brain injury
(mTBI), and improve our longitudinal characterization of structural
mean apparent propagator (MAP) MRI to characterize brain tissue
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brain tissue changes in neurological and psychiatric disorders, aswell as
during normal and abnormal brain development and aging.
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Appendix A. Measures of propagator similarity and anisotropy

The inner product between two propagator P(r) and Q(r) represent-
ed using Na and Nb coefficients in Cartesian functional bases defined by
scaling matrices

A ¼
u2
x 0 0
0 u2

y 0
0 0 u2

z

0
B@
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CA and B ¼
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respectively, is defined as
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with Km + n is 1 whenm and n are even, and 0 otherwise. The similarity
between the two propagators is measured as an angular measure of co-
variance in analogy with the vector dot product:

cosθPQ ¼
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The isotropic part of the propagator Piso(r) can be represented using
the isotropic simple harmonic oscillator reconstruction (iSHORE) basis
functions in spherical coordinates with scaling parameter u0, which
can be related to the expansion in the Cartesian anisotropic SHORE
basis (Özarslan et al., 2013):

Piso rð Þ ¼ ΥTκ ¼ ΨTo ðA:5Þ

where the κ(u0I), andΥ(u0I, r) column vectors denote the iSHORE coef-
ficients κð1þN

2Þ00 and

Υk00 u0; rð Þ ¼ −1ð ÞN=2ffiffiffiffiffiffiffiffi
8π3

p
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e
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2u2
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respectively, while o(u0I) and Ψ(u0I, q) contain the equivalent aniso-
tropic SHORE coefficients and basis functions in Cartesian coordinates,
with on1n2n3 ¼ Kn1n2n3κ ð1þN

2Þ00. The PA is defined using a shape function
Please cite this article as: Avram, A.V., et al., Clinical feasibility of using
microstructure, NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroima
to scale the angular measure θPO between P(r) and Piso(r) for adequate
contrast:

PA ¼ σ sinθPO;0:4ð Þ σ t; ϵð Þ ¼ t3ϵ

1−3tϵ þ 3t2ϵ
ðA:7Þ

To allow direct comparison with the FA, the PADTI is defined using
Eq. (A.7) with the angular parameter θDTI quantifying the similarity be-
tween the anisotropic Gaussian propagator, with scaling parameters
ux, uy, uz, and its isotropic counterpart, defined by the scaling parameter
u0 that maximizes the similarity measure:

cosθDTI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π3 ux uy uz

u2
x þ u2

0

� �
u2
y þ u2

0

� �
u2
z þ u2

0

� �
vuut ðA:8Þ

where u0
2 is the real positive root of the cubic polynomial in U

3XYZ þ XY þ XZ þ YZð ÞU− X þ Y þ Zð ÞU2−3U3 ¼ 0

and X = ux
2, Y = uy

2, Z = uz
2.

Appendix B. Orientation distribution functions

ODFs are computed analytically as radial moments of the propaga-
tors (Özarslan et al., 2013). For example, the 2nd radial moment is

I Ω̂� �
¼
Z∞
0

P rΩ̂� �
r4dr ¼ ρj j5 CTaffiffiffiffiffiffiffiffiffiffiffi

π3 Aj j
p ðB:1Þ

where ρ ¼ ½Ωx
ux
;
Ωy

uy
; Ωz
uz
� and C is a vector given by

Cn1n2n3 Ω̂� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!n3!

p Xn1

i¼0;2…

Xn2
j¼0;2…

Xn3
k¼0;2…

−1ð Þiþ jþk
2

Γ
5þ N−i− j−k

2

� �
βn1−i
x βn2− j

y βn3−k
z

n1−ið Þ! n2− jð Þ! n3−kð Þ!i!! j!!k!!
ðB:2Þ

β ¼ βx;βy;βz
	 
 ¼ 2ρ

ρj j ðB:3Þ
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